PFIA - conférencier invité : Jonathan Ozik

Jonathan Ozik

June 30 session – 2:00 p.m. – 3:00 p.m.

Session chair : Nicolas Sabouret

Harnessing Complex Systems with Agent-based Modeling, Machine Learning and High-performance Computing

In this presentation I will review efforts by our research group to formally facilitate the intersection of agent-based modeling, machine learning methods and high-performance computing, three areas of continuing general interest and growth, to tackle the intricacies of complex systems modeling.

I will provide a brief overview of agent-based modeling and discuss our widely used, free and open source Repast Suite of agent-based modeling toolkits ( I will then describe how our Extreme-scale Model Exploration with Swift (EMEWS) framework ( leverages advances in machine learning algorithms to enable large-scale model exploration of computational models, including agent-based models, on high-performance computing resources.

I will demonstrate applications of our approach across scientific domains where the three pillars of agent-based modeling, machine learning and high-performance computing provide the analytical platform for in silico experiments at the scales needed for deepening our understanding of important complex systems phenomena. Finally, I will describe future directions and our overarching goal of improving interoperability, scalability, transparency and reproducibility in complex systems modeling.

web site

Conférence animée par :

Intervenant Webikeo

Nicolas Sabouret


Université Paris-Saclay

Intervenant Webikeo

Jonathan Ozik


Argonne National Laboratory

Mardi 30 Juin 2020

de 14:00 à 15:30


109 inscrits | 90 mn

Inscription 100% gratuite

Alertes email avant le webinar

Zone de chat pour poser vos questions

Soyez informé de nos prochains webinars, abonnez-vous à notre chaîne.

Conférences invitées - PFIA 2020

Conférences invitées - PFIA 2020